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Introduction

Membranous nephropathy (MN) is a common glomerular disease char-
acterized by the presence of finely granular, electron-dense deposits of
immunoglobulins and complement exclusively along the subepithelial sur-
face of the glomerular capillary wall between podocyte foot processes [1].
The disease is unique because these immune complex deposits are formed
without inducing inflammation. Membranous nephropathy is 
a common cause of idiopathic nephrotic syndrome in adults. Although it
often has a relatively benign or indolent clinical course, 30-40% of patients
progress toward end-stage renal failure within 5-15 years.

Membranous nephropathy may occur as a primary renal disease of
uncertain etiology or as a secondary manifestation of several other dis-
eases including lupus, hepatitis B and C viral infection and reactions to
some drugs. In addition, patients with MN reveal an increased (about
10 fold) incidence of cancer. In more than 50% of patients the tumor is
asymptomatic at the time of renal biopsy [2]. The clinical presentation
of cancer-associated MN cannot be distinguished from that of 
idiopathic MN.

Understanding of the pathogenesis of MN has evolved from an initial
view of the disease as the classic human equivalent of chronic serum sick-
ness to our current belief that MN, like most immune glomerular diseases,
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Idiopathic membranous nephropathy

A b s t r a c t

Membranous nephropathy (MN) is a common glomerular disease characterized
by podocyte injury and proteinuria, often in the nephrotic range. Heymann
nephritis (HN), a rat model of MN, has contributed to elucidation of the under-
lying pathogenic mechanisms which involve in situ formation of subepithelial
immune deposits of antibody reactive with podocyte antigen(s) that produce
glomerular injury by damaging and/or activating podocytes through comple-
ment-dependent processes. Disorganization of the cytoskeleton with subse-
quent redistribution of components of the slit diaphragm and loss of the
glomerular charge barrier induces proteinuria in MN. C5b-9 in sublytic quanti-
ties stimulates podocytes to produce proteases, oxidants, prostanoids, extra-
cellular matrix components, and cytokines. Alterations of the cytoskeleton
induced by C5b-9 also lead podocyte depletion through apoptosis and detach-
ment of viable podocytes. Furthermore, complement components in proteinuric
urine induce proximal tubular epithelial cell injury and mediate progressive tubu-
lointerstitial injury in MN. 

KKeeyy  wwoorrddss::  complement, chronic kidney disease, podocytes, proteinuria.
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is instead a manifestation of an immune response
to self antigens, in this case ones likely expressed
on the podocyte cell membrane. Central to early
understanding the pathogenesis of MN were stud-
ies of how immune deposits form in the lamina rara
externa of the glomerular basement membrane
(GBM) resulting in a membrane-like thickening of
the capillary wall. The target of injury in MN is the
glomerular visceral epithelial cells, or podocytes,
beneath which the deposits are formed. Subep-
ithelial immune complexes are separated from the
circulation by GBM and therefore do not interact
with circulating inflammatory cells or cause inflam-
mation but produce glomerular injury by damaging
and/or activating podocytes through complement-
dependent processes.

What damages podocytes in membranous
nephropathy?

IImmmmuunnee  rreessppoonnssee//HHeellppeerr  TT  cceellllss

Subepithelial immune deposits initiate podocyte
injury in MN. The constituents of these immune
complexes consist of IgG (often IgG4) and so far
largely unidentified antigens (see article by Ronco).
IgG4 is a subclass of IgG produced in the type 2
immune response of helper T cell subsets. Studies
utilizing animal models showed that both periph-
eral and renal immune reactions are strongly polar-
ized toward Th2-type immune responses during the
course of experimental membranous nephropathy
[3]. Furthermore, studies of cytokine profiles in
patients with MN establish that it is a Th2 pre-
dominant disease [4-6]. Although this CD4+ 
T-cell-dependent, humoral immune response surely
results in glomerular immunoglobulin deposition
and complement activation in MN, the traditional
paradigm of Th1 and Th2 subsets has been
extended by identification of a recently identified
subset of interleukin-17-producing T cells, Th17 [7].
Th17 cells develop and function in a distinct way
from Th1 or Th2 cells, and have been shown to play
a crucial role in the induction of autoimmune tis-
sue injury, inflammation and infection. Contribu-
tion of this novel helper T cell subset in MN is a
subject for future studies.

IInn  ssiittuu ffoorrmmaattiioonn  ooff  ssuubbeeppiitthheelliiaall  iimmmmuunnee  
ddeeppoossiittss

In 1959, Heymann et al. [8] established a model
of MN in rats, (Heymann nephritis), that closely
mimicked the human disease. Heymann nephritis
is traditionally induced by immunization with 
a tissue antigen fraction derived from proximal
tubular brush borders (Fx1A). In the active model
of Heymann nephritis, rats respond to the immu-
nization with Fx1A by developing autoantibodies
against various brush border proteins, some of

which are also expressed on the podocyte. Within
6 to 8 weeks, most rats develop characteristic his-
tological changes with immune deposits exclusively
subepithelial in location, usually associated with
the nephrotic syndrome, and mild renal insuffi-
ciency. A passive model of Heymann nephritis has
similar features but is induced by the passive
administration of heterologous antibody from sheep
or rabbits that were immunized with rat Fx1A. This
leads to much more rapid formation of deposits and
proteinuria within 5 to 6 days after injection. Three
decades ago it was demonstrated that the subep-
ithelial deposits characteristic of MN form in situ
when autoantibody IgG binds to a normal podocyte
antigen [9-11]. Subsequent work in the rat models
identified the antigen as megalin, a large mem-
brane glycoprotein related to LDL receptors that is
expressed by podocytes and proximal tubular
epithelial cells in rats (reviewed in [12]). Although
human podocytes do not express megalin, and it is
unlikely that megalin plays a role in the pathogen-
esis of human MN, these studies provided proof of
principle that subepithelial immune deposits in the
human disease probably form the same way.
Although the search for the pathogenic antigen in
human MN has been long and challenging, recent
studies have been encouraging. Ronco et al. have
identified podocyte neutral endopeptidase (NEP) as
the autoantigen in some cases of maternal alloim-
munization leading to MN in the infant [13].
Recent work by Beck, Salant and colleagues in Bos-
ton has apparently identified the long sought
nephrotogenic antibody in adult idiopathic mem-
branous nephropathy. They demonstrate that IgG4
antibody to another normal podocyte membrane
glycoprotein, M-type phos-pholipase A2 receptor,
is uniquely present in the serum of a majority
of these patients, is also present in glomerular
immune deposits and correlates with disease activ-
ity and response to therapy [14].

TThhee  mmeemmbbrraannee  aattttaacckk  ccoommpplleexx  ((CC55bb--99))

Although granular deposition of immunoglobu-
lin and complement components along the capil-
lary tufts are a hallmark of immunofluorescence
studies of MN, antibody deposition alone does not
induce proteinuria [15]. Podocyte dysfunction and
accom-panying loss of glomerular barrier function
are induced by complement attack that overcomes
the normal defenses mounted by CRPs is usually
essential to the loss of glomerular barrier function
that produces the clinical features of MN.

Strong experimental evidence and some clinical
data now implicate the terminal portion of the com-
plement system, C5b-9, as the pathogenetic media-
tor of antibody-induced injury to the podocyte in MN.
In 1980, Salant and Couser showed that complement
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depletion in PHN rats resulted in the total absence
of proteinuria despite the lack of any effect on anti-
body deposition, demonstrating for the first time that
complement is a crucial mediator of podocyte injury
in experimental MN. Later studies utilizing isolated
kidneys perfused with anti-podocyte antibody in
complement deficient serum, and animals selectively
depleted of, or genetically deficient in, C6 established
the role of the terminal membrane attack complex
of complement, C5b-9, in the development of
podocyte injury and proteinuria in the PHN model of
MN [16-19]. Although the finding that proteinuria in
experimental MN is C5b-9 dependent has been con-
firmed in many studies, some reports have also doc-
umented a C5b-9 independent process that may be
T cell mediated [20, 21].

C5b-9 is a macromolecular complex that results
from proteolytic cleavage of C5 to generate C5b,
which then combines with C6 and C7 to form the
C5b-6,7 complex, an amphophilic molecule that
has binding sites for the lipid bilayer of cell mem-
branes. Once it is formed, C5b-7 binds C8 to pro-
duce a tetrameric complex referred to as 
C5b-8. The primary function of membrane-bound
C5b-8 is to serve as a receptor for C9 in the final
step of C5b-9 membrane attack complex (MAC)
formation. The C5b-9 complexes may contain 1~18
C9 molecules attached to a C5b-8 complex. When
the number of C9 molecules per C5b-8 exceeds
12, they self-polymerize and form a cylinder-
shaped transmembrane structure. When mem-
brane insertion of C5b-9 occurs, non-nucleated
cells such as erythrocytes are easily lysed via alter-
ation of the permeability of cell membranes. How-
ever, in nucleated cells such as podocytes, C5b-9
attack may induce activation rather than damage
[22]. Thus, the cellular response to C5b-9 injury is
not a simple consequence of just pore formation
in the cell membrane, but rather is an active
process analogous to receptor mediated signaling
(see below).

CCoommpplleemmeenntt  rreegguullaattoorryy  pprrootteeiinnss  ((CCRRPPss))

To prevent undesirable complement activation,
rigorous regulatory mechanisms are exhibited by
host cells [23]. These include the plasma proteins
C4-binding protein and factor H and the cell mem-
brane proteins decay accelerating factor (DAF;
CD55), membrane co-factor protein (CD46), and
complement receptor 1 (CR1; CD35). Human
podocytes use DAF and CR1 to limit C3 and C5 acti-
vation and CD59 to restrict C5b-9 formation. Path-
ogenic C5b-9 attack on podocytes or other nucle-
ated cells requires that a defense system against
complement attack, at both the circulatory and the
cellular levels, fails.

The crude Fx1A preparation used to induce active
Heymann nephritis in rats contains CRPs, and

within anti-Fx1A generated in rats (or in sheep as
used in passive Heymann nephritis), there are anti-
bodies to CRPs that can neutralize their activity on
podocytes in vitro [24-26]. Furthermore, while injec-
tion of anti-megalin antibodies does not induce
overt proteinuria in experimental animals, con-
comitant administration of neutralizing antibody to
a podocyte CRP (Crry) permits development of
abnormal proteinuria [27].

Currently, there is no evidence that CRPs on the
podocyte are the target of autoantibodies in human
MN. This may be explained by massive complement
activation overwhelming normal regulation even in
the presence of a full repertoire of CRPs or by 
a reduction in expression of CRPs that could
enhance podocyte susceptibility to complement
activation.

Activation of podocyte in response 
to sublytic C5b-9

The podocyte response to sublytic C5b-9 attack
results in a number of events that have been shown
to be important in the mediation of glomerular
injury in MN.

OOxxiiddaannttss

Sublytic C5b-9 can activate podocytes leading to
production of reactive oxygen species (ROS) 
[28, 29], which may be mediated by up-regulation
of NADPH-oxidase [30]. Reactive oxygen species ini-
tiate lipid peroxidation and subsequent degrada-
tion of GBM collagen IV, a process that may also
contribute to proteinuria.

Reactive oxygen species also increase expres-
sion of C/EBP homology protein (CHOP) in cultured
podocytes, and overexpression of CHOP in turn
stimulates ROS production by podocytes [31]. C/EBP
homology protein belongs to the group of growth
arrest and DNA damage (GADD) genes and regu-
lates the function of C/EBP by preventing its DNA
binding to the promoters of a subset of genes [32].
Immunohistochemical staining has demon-strated
up-regulation of CHOP in proteinuric human kid-
neys including some with MN [31].

PPrrootteeaasseess

Sublytic C5b-9 also stimulates podocytes to pro-
duce proteases, which disrupt the glomerular base-
ment membrane (GBM). In experimental MN,
podocytes exhibit increased expression of metal-
loproteinase, and the temporal pattern of pro-
teinase expression correlated with the onset of pro-
teinuria [33]. It is likely that C5b-9 activated
podocytes are the principal effector cells mediating
the damage to underlying GBM in MN through
release of increased quantities of both oxidants and
proteases.
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AAlltteerraattiioonnss  iinn  tthhee  ccyyttoosskkeelleettoonn  aanndd  sslliitt
ddiiaapphhrraaggmm  ccoommppoonneennttss

Nephrin is linked to the actin cytoskeleton as 
a key component of the slit diaphragm, a structure
with a crucial role in maintaining the glomerular fil-
tration barrier. C5b-9 formation leads to podocyte
cytoskeletal changes [34] with subsequent dissoci-
ation of nephrin from the actin cytoskeleton and
development of proteinuria [35-37]. Immuno-histo-
chemical studies, in situ hybridization analysis, and
PCR studies of renal biopsy specimens from human
patients with MN show re-distribution and exten-
sive loss of nephrin expression [38-40].

C5b-9 stimulates multiple signaling pathways,
which have been investigated in detail by Cybulsky
and Takano. Cytoskeletal changes induced by 
C5b-9 are mediated by several distinct signaling
pathways. C5b-9 phosphorylated and activated
extracellular signal-regulated kinase (ERK) with sub-
sequent phosphorylation of cytosolic phospho-
lipase A2 in podocytes in culture and in PHN in vivo.
Studies utilizing drugs that disassemble the actin
cytoskeleton show that activation of ERK was atten-
uated by these compounds, demonstrating that
complement-induced ERK activation depends on
cytoskeletal remodeling [41]. In addition, an increase
in RhoA activity was observed in cultured rat
podocytes stimulated with complement C5b-9 as
well as in glomeruli from rats with PHN and 
may participate in derangements of the actin
cytoskeleton [42]. Many cytoskeletal responses are
mediated by the Rho family of small GTPases. It
remains to be elucidated whether activation of
RhoA and phosphorylation of ERK interact.

While the actin cytoskeleton is primarily local-
ized in the foot process, microtubules and inter-
mediate filaments predominate in the cell body and
primary processes. Nestin is a cytoskeleton-associ-
ated intermediate filament protein detected in
glomerular podocytes. Nestin interacts with all three
classes of cytoskeletal proteins, and may be
involved in the organization of the cellular
cytoskeleton. Studies of renal biopsies from patients
show that podocyte nestin protein expression is
significantly reduced in kidneys with podocyte
effacement including MN [43].

All these observations indicate that alterations
of the podocyte cytoskeleton, in association with
nephrin re-distribution due to C5b-9 attack, likely
contribute to proteinuria in MN.

AAlltteerraattiioonnss  iinn  cchhaarrggee  bbaarrrriieerr

The biological significance of the glomerular
charge barrier to protein filtration is well established
[44]. Evaluation of barrier charge selectivity utili-
zing dextran sulfate in patients with MN has doc-
umented impairment of the electrostatic barrier in

addition to the size-selectivity barrier [45]. Recent
studies measured clearance of chymotrypsinogen
A and similar sized anionic chymotrypsinogen, con-
firm a pathogenic role for impairment of the charge
barrier at the onset of proteinuria in PHN [46].

PPrroossttaannooiiddss

C5b-9 up-regulates cyclooxygenase-2 and
induces eicosanoid production [47]. Furthermore,
C5b-9 activates cytosolic phospholipase A2 (PLA2)
and induces phospholipid hydrolysis in podocytes,
resulting in impairment of endoplasmic reticulum
(ER) membrane integrity and subsequent ER stress
[48]. In contrast, recent studies by the same group
showed different roles of calcium-independent PLA2
(iPLA2) in podocyte injury. Complement-mediated
arachidonic acid (AA) release was augmented in
association with significant attenuation of cyto-
toxicity in podocytes overexpressing iPLA2-γ. Fur-
thermore, overexpression of iPLA2-β did not amplify
complement-dependent AA release, but nonethe-
less attenuated complement-mediated cytotoxic-
ity [49]. These studies demonstrated specific roles
of different PLA2 isoforms in complement-mediated
podocyte injury.

The physiologic significance of an imbalance of
prostanoids in vivo has been supported by docu-
menting a reduction in proteinuria out of propor-
tion to changes in GFR following COX-2 inhibition
in Heymann nephritis rats [50, 51].

TTGGFF  aanndd  TTGGFF  rreecceeppttoorrss

The morphologic hallmark of established MN is
the presence of thickened basement membranes
with spike-like extensions of matrix between
podocytes [52]. The increase in matrix proteins
causes the characteristic thickening of the GBM,
giving rise to the term membranous nephropathy. 
In vitro studies that have used human podocytes
have established the capacity of sublytic C5b-9
attack to markedly upregulate production of
laminin and type IV collagen [53], and molecular
studies have confirmed an increased gene expres-
sion for extracellular matrix, including type I colla-
gen [54, 55].

TGF-β is a major cytokine that plays a pivotal
role in matrix accumulation. Shankland et al. doc-
umented a marked increase in expression of the
TGF-β2 isoform in podocytes in experimental MN
as well as upregulation of TGF-β receptors on the
podocytes [56]. While these results suggest that
matrix expansion, spike formation, and subsequent
functional abnormalities are likely TGF-β driven,
recent studies demonstrated decreased MMP-9
level contrasted with a high MMP-2 level and 
a normal TGF-β1 level in patients with MN, raising
a possiblility of participation of an imbalance of
matrix metalloproteinases [57].
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Fate of podocytes following sublytic 
C5b-9 attack

LLaacckk  ooff  pprroolliiffeerraattiioonn  aanndd  aappooppttoossiiss

Normal podocytes are terminally differentiated
and quiescent cells. Loss of podocytes, in combi-
nation with limitations in their compensatory pro-
liferation in response to injury, is thought to under-
lie the development of glomerulosclerosis in various
glomerular diseases, including MN [58-60]. While
sublytic C5b-9 attack on podocytes promoted cell
cycle entry in association with up-regulation of
mitotic proteins such as cyclin B1, B2, and D1 
[61, 62], C5b-9 arrested podocytes at the G2/M
phase, thereby preventing mitosis and cytokinesis
in vitro [63]. An abnormality in the exit from mito-
sis results in the presence of bi- or multinucleated
podocytes, as observed in Heymann nephritis rats.
C5b-9 also induces DNA damage in podocytes that
may contribute to the lack of a proliferative
response [64]. Podocyte number is reduced in
experimental MN, and this is likely due to detach-
ment of podo-cytes [65] and apoptosis [66].

C5b-9, like other noxious stimuli, may also
induce apoptosis of podocytes in MN. Loss of
podocytes via apoptosis may occur either directly
or indirectly via C5b-9 mediated cellular injury.
Podocyte apoptosis may be mediated by various
growth factors and cytokines such as basic FGF
[67]. Podocytes also respond to angiotensin II, and
angiotensin II induced apoptosis in cultured rat
podocytes in a dose- and time-dependent manner
[68]. Apoptosis signal-regulating kinase 1 (ASK1),
a mitogen-activated protein kinase (MAPK) kinase
of the c-Jun N-terminal kinase (JNK) and p38 MAPK
pathways, is also likely to mediate podocyte injury
induced by C5b-9 [69]. ASK1 was activated in
glomeruli of rats with PHN, and incubation of
podocytes in culture with antibody and sublytic 
C5b-9 stimulated ASK1 activity. Complement-
induced lysis was enhanced in podocytes that over-
express ASK1, and was attenuated in podocytes
that overexpress a dominant negative ASK1 mutant.

Podocyte injury in MN may also result in 
a decrease in expression of vascular permeability
factor/vascular endothelial growth factor
(VPF/VEGF-A), which is expressed constitutively in
podocytes at high levels. Clinical studies demon-
strate that active MN is associated with diminished
expression of VEGF in podocytes, which is reflected
by decreased urinary VEGF excretion [70]. Recent
data from podocyte-specific knockout mice [71] as
well as studies utilizing neutralizing antibodies [72]
suggest that VPF/VEGF-A is critical for the proper
maintenance of glomerular filtration barrier and the
glomerular endothelial fenestrae. Recent studies
also demonstrate that VEGF prevents podocyte
apoptosis via phosphorylation of nephrin [73, 74].

Diminished expression of VEGF in MN may there-
fore contribute to alterations in glomerular perms-
electivity as well as podocyte loss, leading to sub-
sequent proteinuria and glomeru-losclerosis.

DDeettaacchhmmeenntt

Detachment of podocytes from the underlying
GBM may also be responsible for an increase in pro-
tein permeability as well as a decrease in podocyte
number. Older studies by Schneeberger et al. uti-
lizing ultrastructural tracer molecules demonstrated
that sites of podocyte detachment corresponded
with sites of increased protein permeability in Hey-
mann nephritis [75]. Studies demonstrating
podocytes in urine of patients and experimental
animals with glomerular injury support this con-
cept of detachment as an important functional
event in MN [65, 76].

Cytoskeletal changes induced by C5b-9, as
described above, may cause detachment of
podocytes from the GBM, which is aggravated by
direct GBM damage from podocyte-derived media-
tors produced in response to C5b-9 as well as by
mechanical stretch. Furthermore, detachment of
podocytes due to degradation of GBM by proteases
produced by podocytes [77, 78] may also be involved.

Complement components in proteinuric urine

Proteinuria is a major mediator of progressive
interstitial fibrosis in any chronic proteinuric disor-
der including MN, and C5b-9 formation in tubules
is likely to account for most of the nephrotoxic
effects of increased excretion of high molecular
weight proteins. Utilizing animals genetically defi-
cient in C6, and therefore unable to form C5b-9 com-
plexes, we have shown that progressive interstitial
fibrosis develops in complement-sufficient rats made
proteinuric with aminonucleoside of puromycin or
5/6 nephrectomy whereas C6-deficient rats with
equivalent proteinuria are protected from intersti-
tial changes and progression [79, 80]. 

Under pathological conditions, intratubular com-
plement activation occurs apparently due to filtered
properdin binding to proximal tubular brush bor-
ders and defective factor H binding resulting in acti-
vation of the alternative complement pathway
involving both filtered and locally synthesized native
complement components [81, 82]. This results in
insertion of C5b-9 into the brush border mem-
branes of proximal tubular cells and an interstitial
inflammatory response [83].

Previous studies demonstrated excretion of 
C5b-9 in urine of patients with MN [84-89]. This can
be explained by shedding of C5b-9 by podocytes into
the urine during the active phase of the disease.
However, some C5b-9 may also derive from that
formed on tubular cells. Formation of C5b-9 on
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tubules was recently emphasized by multivariate
analysis of patients with rapidly progressive
glomerulonephritis, which showed that the inten-
sity of tubular expression of C5b-9 predicted an
unfavorable outcome [90].

Conclusions

Of all the progressive immune glomerular dis-
eases, progress in understanding the patho-gene-
sis of MN has arguably out-paced any others. Exper-
imental evidence suggests a central role of C5b-9
in the pathogenesis of MN. Our understanding of
podocyte and glomerular biology has rapidly
expanded over the last few years thanks to estab-
lishment of podocyte cell lines, discovery of novel
proteins constituting the slit diaphragm, and sophis-
ticated studies utilizing mouse molecular genetics
and cell biological approaches. Interference with the
formation of, or nephritogenic responses to, C5b-9
in ways that prevent the podocyte from becoming
an effector cell when targeted by immune events
will likely benefit the disease.
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